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We present a composite-data processing method which simul-
aneously processes two or more data sets with different measure-
ent errors. We examine the role of the noise level of the data in

he singular value decomposition inversion process, the criteria for
proper cutoff, and its effect on the uncertainty of the solution.
xamples of processed logs using the composite-data processing
ethod are presented and discussed. The possible usefulness of the

pparent T1/T2 ratio extracted from the logs is illustrated. © 1999

cademic Press

INTRODUCTION

Since the introduction of pulsed nuclear magnetic r
ance (NMR) logging tools (1–3), there have been extens
tudies on the inversion of NMR data to obtainT2 amplitude
istributions. TheseT2 distributions provide crucial infor
ation on porosity, irreducible water saturation, oil visc

ty, permeability, etc., which are very important to
etroleum industry. Hence, it is essential to use a pr

nversion procedure to ensure that theT2 distribution we
btain faithfully reflects the information acquired from
easurements.
In the oil industry, a suite of well logging tools is used
newly drilled well to perform physical measurements

nd where the oil is. These tools measure such thing
lectron density, acoustic velocity, neutron density, ele
al resistivity, and, most recently, nuclear magnetic r
anceT2 relaxation. The purpose is to determine reser
roperties such as porosity (void fraction), the rela
mounts of hydrocarbon and brine in the reservoir, and
ermeable the reservoir is to fluid flow. In measuringT2

elaxation, NMR logging tools obtain measures of poro
proportional to signal amplitude) and pore sizes (pro
ional to relaxation time constants). These measures
sed, in turn, to infer permeability and the minimum br
aturation that the reservoir can have.
To improve the signal-to-noise (S/N) ratio without sig-

ificantly increasing the logging time, Prammeret al. (4)
ntroduced the idea of following each CPMGT2 sequenc
ith a series of CPMG “bursts” of echoes separated by s

elays between bursts. The purpose of the added bursts isa
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mprove the precision of the signal amplitude determina
t short relaxation times. The problem that this appro
aises, however, is how do we combine two data sets
ifferent S/N ratios, echo spacings, and repeat delay ti

n the calculation of signal amplitude andT2 distribution.
he purpose of this paper is to describe a means of
ining these data sets in a way that accounts for the d
nces in a self-consistent manner. The approach results

mprovement in the precision of the porosity and the re
ution of short T2 time constants over what could
chieved without the bursts.

THE INVERSION OF NMR LOG DATA

The NMR logging tools typically acquireT2 spin-echo train
f several hundreds to a few thousands of echoes. The i
ion process involved is to find a set ofT2 amplitudes,f j , from
set of measurements,gi ,

gi 5 M~t i!/M0 5 O
j51

m

fje
2ti/Tj 1 e i, i 5 1, . . . , n, [1]

y minimizing the errore i . Here we assume that there arn
choes each with an amplitudegi measured att i andm relax-
tion timesTj preselected to be equally spaced on a logarith
cale. Thus, it is a linear inversion problem. The least-squ
t is used to minimize the sum

minH O
i51

n 1

s i
2 ~O

j51

m

fje
2ti/Tj 2 gi!

2J . [2]

This problem is well known to be ill-posed. Small fluctu
ions in the measured data can lead to drastically differen
f f j ’s which all give reasonably good fits. This problem
een studied extensively in the past. There are various wa
andling the problem. One of the approaches is to a
enalty function to smooth or “regularize” the solution. Th

ton optimum regularization parameter commensurate with the

1090-7807/99 $30.00
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154 DUNN AND LATORRACA
easurement error is determined and used as the opti
egularized solution.

We found, however, that the singular value decompos
SVD) method is particularly attractive for the following re
ons: (1) it does not require a penalty term and a search fo
ptimum regularization parameter, (2) it provides a clear

ure of the characteristics of the matrix and the overall p
rties of the inversion procedure, and (3) it offers a stra

orward and easily comprehensive method of obtaining
egularized solution by removing the singular values sm
han the measurement error.

In general, we assume the measurement error for each
cho is the same. Thus,s i in Eq. [2] is the same for alli ’s.
owever, the procedure becomes somewhat unclear whe
eed to process simultaneously two or more NMR data
ith very different measurement errors. In fact, one encou
similar problem when the NMR time domain data are c

ressed or averaged within different window lengths.
indowing leads to different improved precisions.
In the following, we take a closer look at the procedure u

n the SVD inversion as to how the noise level affects
olution and elucidate the process with a geometric pictu
We first present a composite-data processing method w

rocesses two or more data sets with different measure
rrors simultaneously. We then examine the role of the n

evel of the data in the SVD inversion process and its effec
he uncertainty of the solution. The results from the compo
ata processing method are presented and some of the
oncerning theT1/T2 ratio are discussed. Finally, we revi
ome of the general properties of the linear inversion for N
ata.

COMPOSITE-DATA PROCESSING

Recently, Numar introduced a total porosity tool (4), MRIL-
TP, which measures the “clay-bound” water. It produces
ata sets: the regularT2 measurement (time between echo
E 5 1.2 ms) with several hundred echoes and a com

ecovery time, and the short burst mode (TE5 0.6 ms) which
tacks 48 bursts of 10 echo trains each with an incom
ecovery time of 20 ms. The short burst mode has a seve
mprovement of measurement precision compared with
egular mode. Figure 1 shows how the raw echoes for the
ets of data look. The short burst mode has a high measur
recision which helps accurate determination of the shoT2

omponents, whereas the regular mode covers the medi
ong T2 relaxation times. This is an excellent combination

easure theT2 relaxation behavior of the formation over
arge time scale. The challenge is how to invert these two
ets simultaneously to obtain as accurate aT2 distribution as
ossible.
More recent logging tool developments (5, 6) involve a

ine-frequency data acquisition scheme and three sets o

rains with different measurement precisions. However, thfi
lly
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hallenge to properly invert all data sets simultaneously is
ame. Without loss of generality, we shall limit our follow
iscussion to two data sets with different measurement e
We proposed a composite-data processing method (7) to

andle the problem. Basically, we need to minimize the
owing two sets of data simultaneously:

minH O
i51

p 1

s 1
2 ~O

j51

m

kijyj 2 bi!
2J [3]

minH O
i51

q 1

s 2
2 ~O

j51

m

l ijyj 2 ci!
2J , [4]

here

kij 5 ~1 2 e2TRl /rTj!e2ti/Tj [5]

l ij 5 ~1 2 e2TRs/ rTj!e2ti/Tj. [6]

TRl and TRs represent, respectively, long (complete)
hort (incomplete) TR (recovery time),s1 ands2, the regula
ode measurement error and the high precision, short
ode measurement error, andp andq, the number of echoe

or data points) in the regular and the short burst modes
Hence, to set up the combined data sets as one least-s

FIG. 1. Two sets of CPMG spin-echo trains measured by an NMR log
ool with different measurement errors, one is the short burst mode with
pacing of 0.6 ms and the other is the regular mode with echo spac
.2 ms.
et problem, we have
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·
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·
·
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·
·

s1
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·
·
·

·
·
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43
y1

·
·
·
·
·
·

ym
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5 3

b1

·
·
·

s1

s2
c1

·
·
·

4 5 3
g1

·
·
·
·
·
·

gn

4 , [7]

hereAij represents the combined matrix withn 5 p 1 q, and
the combined data vector withn elements.
Note that the high precision data as well as its correspon
atrix elements have now been scaled by a factor ofs1/s2,

uch that the combined data set has a common noise le
1. The latter will be used for the cutoff in the SVD invers
rocedure.
Once the combined data sets are set up as one least-s

t problem with the proper weighting taken care of, the met
or solving the equation need not to be limited to the S
echnique. The combined data set need not be restricted t
ata sets, either.
In fact, we encounter a similar situation of varying varian
hen compressing the time domain data into several wind

o increase the computation speed. For example, Eq. [2] c
ransformed to

O
i51

s 1

Nis
2 ~O

j51

m

fjKij 2 Gi!
2, [8]

here n echoes have been partitioned intos windows (i 5
, . . . , s) with Ni echoes in thei th window, and

n 5 N1 1 · · ·1 Ni21 1 Ni 1 · · ·1 Ns,

r i 5 N1 1 · · ·1 Ni21, r 1 5 0,

Kij 5 O
k5r i11

r i1Ni

e2tk/Tj,

Gi 5 Or i1Ni

gk. [9]

k5r i11 f
g

of

ares
d

wo

s
s

be

ow the variance forGi is Nis
2, and each window has

ifferent variance.
Similarly, we can also average the data within each wind

ssuming the linear approximation is valid, to obtain

O
i51

s 1

~s/ÎNi!
2 ~O

j51

m

fje
2ti/Tj 2 g# i!

2, [10]

here g# i is simply the average of the data within thei th
indow, and t i is an appropriate midpoint within thei th
indow. The noise level for thei th window is now reduced t
/=Ni .
Regardless of time domain data sum or average, it is ea

escale the matrix elements and the data vectors so th
indows have the same noise level, as we did in the com

te-data processing. This common noise level can then be
s the cutoff for the SVD inversion process.

CUTOFF FOR SINGULAR VALUE DECOMPOSITION

Now that the common noise level for a composite-data
an be established, we need to understand how to choo
ignal level for the inversion process and reexamine the
ion and the effect for the cutoff of singular values in the S
nversion process. Recall that the singular value decompo
heorem in linear algebra (8, 9) states that any realn 3 m
atrix A (n $ m) can be written as the product of ann 3 n
rthonormal matrixU, an n 3 m diagonal matrixL with
ositive or zero diagonal elements, and the transpose

3 m orthonormal matrixV, i.e.,

A 5 ULV T, [11]

here

U TU 5 I , V TV 5 I [12]

O
i51

n

UipUiq 5 dpq, 1 # p, q # n [13]

O
i51

m

VipViq 5 dpq, 1 # p, q # m [14]

nd

L 5 diag~l1, l2, . . . , lm!. [15]

he diagonal elementsl 1 . l 2 . . . . . lm $ 0 are called
he singular values of matrixA.

The straightforward Householder transformations u

or the decomposition ofA need not produce all positive
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ingular valuesl’s in descending order. However, it is ea
o make them all positive by making those that are nega
ositive and changing the sign of the corresponding ei
ectors, either the column vectorsui or the row vectorsv i .
t is also straightforward to rearrange them in a descen
rder by interchanging the corresponding column and
ectors. Hence, once the program is written in such a wa
roduce aL with all the singular values positive and
escending order, the information is contained in bothU and

matrices. When the operatorA is transformed to th
oordinates of the principal axes, theU andV matrices als
ransform the solution vectory and data vectorb into the
orresponding principal axes. If we change the orde
quations in the set of linear equations represented byA, the
ecomposed diagonal matrixL will always have the sam
ingular values in the same descending order, whereasU
nd V matrices will be different.
Let us consider the matrix equation

Ay 5 b, [16]

here the matrixA [ R n3m operates on a vectory [ Rm to
roduce a vectorb [ R n, andA has all properties describ

n Eqs. [11–15]. Then

iAy i 2 5 y TA TAy 5 y9 TL TLy9 5 iLy9i 2, [17]

hereA 5 ULV T, y 5 Vy9, andi i represents the norm
vector.
The largest (smallest) value ofiAyi2 occurs wheny is along

he direction of the eigenvector corresponding to the lar
smallest) singular valuel1 (lm). Hence, for an arbitrar
ectory, the following inequality is established:

l 1
2 $

iAy i 2

iyi 2 $ l m
2 , [18]

hich means for the vectorb,

l 1
2 $

ibi 2

iyi 2 $ l m
2 . [19]

Frequently, we measureb and try to determiney. There is
lways measurement error involved in obtainingb. Therefore

nstead ofb andy, we haveB 5 b 1 db andY 5 y 1 dy, and
e are faced with a problem of

A ~y 1 dy! 5 b 1 db [20]

ather than
Ay 5 b, [21] t
e
n-

g
w
to

f

st

herey andb represent, respectively, the ideal solution and
deal data vector without measurement errors, anddy anddb
epresent, respectively, the deviation in the solution and
easurement error of the data vector.
To satisfy Eqs. [20] and [21], we must have

Ady 5 db. [22]

ssuming that the matrixA is of rank m, its form in the
rincipal coordinates is represented byL with m nonvanishing
escending singular valuesl 1, . . . , lm, and the normalize

eft and right singular vectors are denoted byu1, . . . , un, and
1, . . . , vm, respectively, we can then expressy9 andb9 as

y9 5 V Ty [23]

b9 5 U Tb, [24]

here the lengths of bothy and b are not influenced by th
rthogonal transformation, i.e.,iyi 5 iy9i and ibi 5 ib9i.
Note that since the operation ofA is restricted to the sub

pace ofU (i.e., spanned byu1, . . . , um), bothb andb9 should
e in that subspace if the model for inversion is correct.
ortion of bothb andb9 in the subspace spanned byum11, . . . ,
n is a measure of how inaccurate the model is.
When A is transformed to the coordinates of the princ

xes, we have

Ly9 5 LV Ty 5 U Tb 5 b9 [25]

Ldy9 5 LV Tdy 5 U Tdb 5 db9.
[26]

Assuming that differentbi ’s have errors that are statistica
ncorrelated and have the sames, then

^dbidbj& 5 s 2d ij [27]

nd

^db9idb9j& 5 ^O
k

Ukidbk O
l

Uljdbl& 5 s 2d ij [28]

^dy9idy9j& 5 Kdb9i
l i

db9j
l j

L 5
s 2

l i
2 d ij [29]

^dyidyj& 5 ^O
k

Vikdy9k O
l

Vjldy9l& 5 O
k

s 2

l k
2 VikVjk. @30#

The requirement for a good solution,^dyi
2& ! yi

2, is thus

ranslated into
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O
k

s 2

l k
2 Vik

2 ! y i
2 5 ~O

k

Viky9k!
2

5 S O
k

Vik

lk
b9kD 2

5 S O
kl

VikUlk

lk
blD 2

. [31]

A necessary condition for this to be true for everyi is that
he sum obeys the same inequality

O
i51

m

^dy i
2& ! O

i51

m

y i
2. [32]

he r.h.s is

O
i51

m

y i
2 5 O

i51

m

y9i
2 5 O

i51

m b9i
2

l i
2 [33]

nd the l.h.s is

O
i51

m

^dy i
2& 5 O

i51

m

^dy9i
2& 5 O

i51

m ^db9i
2&

l i
2 5 O

i51

m
s 2

l i
2 . [34]

hus we need to satisfy

O
i51

m
s 2

l i
2 ! O

i51

m b9i
2

l i
2 . [35]

his equation can be satisfied ifs 2 ! b9i
2 for all i . However

t can fail if the m supposedly independent equations
ctually nearly nonindependent which results in some
mall singular values. In particular, those values may dom
he two sums of [35]. If for those smalll i ’s, ub9i u is not much
arger thans, then [35] will not be satisfied. We can reme
his by discarding a sufficient number of smalll i , e.g., alll i ,
. r , such that the more restricted sums (i.e., fori 5 1, . . . ,
; r # m) satisfy the inequality to a desired degree

O
i51

r
s 2

l i
2 5 e 2 O

i51

r b9i
2

l i
2 , [36]

heree is a suitably chosen small parameter.
Apparently, a data set with a very high signal-to-noise r
ill allow us to choose a smalle. Instead of choosing
onstante, it is convenient to choose ane commensurate wit
he noise level. From the discussion of Eqs. [18] and [19

eems appropriate to choose i
e
ry
te

o

it

l1

l r
5

ib9i
s

5
ibi
s

<
ib 1 dbi

s
, [37]

herel r is the cutoff and is determined byib 1 dbi/s. Such
choice corresponds to ane2 given by

e 2 ;
ib9i 2/l 1

2

¥ i51
r b9i

2/l i
2

¥ i51
r 1/l i

2

1/l r
2 . [38]

nce a proper cutoff such as [37] is determined, the un
ainty dyi for eachyi can be calculated from [31]. The cho
e made for the cutoff, i.e., Eq. [37], is a consistent

easonable one. On the other hand, it is also somewhat s
ive as the requirement of [32] is not very well defined
lightly lower cutoff can be used and will provide more inf
ation at the risk of admitting components with higher un

ainties, and vice versa.
The singular values smaller thanl r (i.e., alll i , i . r ) which

re discarded in the restricted sums are effectively replac
in the inverse matrixL21. This means matrixL21 is effec-

ively a smaller matrixLr
21 which has onlyr nonzero diagona

lements, and bothU andV are replaced by smallerUr andV r

panned byu1, . . . , ur , andv 1, . . . , v r (r # m), respectively
Hence the solutionY 5 y 1 dy is given by

Y 5 A 21B 5 V rL r
21U r

T~b 1 db!, [39]

hereA21 is a pseudo inverse operating only in the subs
panned byV r andUr . The measurement errors forces us to
ut off from l r . This means that part ofb that is in them 2 r
imensional space is masked by noise and becomes partdb.
he remainingb (which we refer to asb) is in the r dimen-
ional space, anddb is in them 2 r dimensional space whic

s always normal to the subspaceUr .
Therefore, we have

ib 1 dbi 2 5 ibi 2 1 idbi 2 [40]

nd

iAY 2 Bi 2 5 iAY 2 bi 2 1 idbi 2, [41]

nd the l.h.s. is at its minimum whenAY 2 b 5 0. When there
s no constraint onY, a solution forAY 2 b 5 0 can alway
e found. However, if some of the elements ofY happen to b
egative, and the nonnegativity constraint is imposed, thenY is
o longer at its calculus minimum andiAY 2 bi2 $ 0.

GEOMETRIC PICTURE FOR SVD

In fact, we can try to understand the properties of the S

nversion process with a geometric picture. From [25], we get
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b91
2

l 1
2 1

b92
2

l 2
2 1 · · ·1

b9m
2

l m
2 5 iy9i 2 [42]

nd

l 1
2y91

2 1 l 2
2y92

2 1 · · ·1 l m
2 y9m

2 5 ib9i 2. [43]

As shown in Fig. 2,A operates on a vectory9 and produce
n ideal data vectorb9. The vectorb9 should have a relation
hip withy9 according to [25], andb9 andy9 should be situate
n the surface ofm-dimensional hyperellipsoids described

42] and [43], respectively.
Then the inversion process would be, given a data vectb9

ith measurement error (depicted in the figure as a sp
bout the vectorb9, illustrating the random nature of the nois
nd try to determine a vectory9 (also depicted in the figure wi
n ellipsoid representing uncertainties about the solution).

he lengths of the radius vectors along the principal axes fo
9-ellipsoid are proportional to singular valuesl i , whereas
hose for they9-ellipsoid are inversely proportional to singu
aluesl i .
The inversion process is equivalent to squeezing theb9-

llipsoid along all its principal axes by a factor proportiona
i , whereb9 will now becomey9, andy9 will be located on th
urface of they9-ellipsoid. Naturally, any error inb9 (the
pherical shade) will be translated to the error iny9 (the
llipsoidal shade). Note that the uncertainty ofy9 along the axi
ssociated with the largest singular value,l1, is relatively smal
ompared with that associated with the smallest singular v

FIG. 2. The m-dimensional hyperellipsoids depicting relationships
ween the data and solution vectors.
m. In fact, the error iny9 along the principal axes (i.e., s
re

te
e

e,

1, . . . , vm) is inversely proportional to the singular valuesl i .
hat’s why the sphere, representing the isotropic noises i
ata space, translates to an ellipsoid representing the u

ainties in the solution space.
To illustrate how the discarding of small singular val

ffects the uncertainty of the solutiony, we draw in Fig. 3 a
llipsoid representing the uncertainty ofy9 in the solution
pace. The equation for the ellipsoid

l 1
2dy91

2 1 l 2
2dy92

2 1 · · ·1 l m
2 dy9m

2 5 idb9i 2 [44]

s obtained from [26], where the lengths of radius vectors
nversely proportional tol i . By discarding small singula
alues, i.e.,l2, as shown in Fig. 3, one effectively collapses
92 axis to zero (i.e., replacing 1/l2 by 0 in the inverse matri

21). As a result, the uncertainties iny1 and y2 are greatly
educed.

RESULTS AND DISCUSSION

A typical example for implementing [36] is shown in Fig.
rack 1 shows the porosity and the uncertainties comp

rom [34]. Track 2 shows the parametere (EPSILON) com-
uted from [38] when the cutoff is determined by [37]. Thi
quivalent to a value ofe2 around 0.01, a reasonably sm
umber. Track 2 also shows another parameter,UXP, which is
efined as

FIG. 3. The hyperellipsoid of the uncertainty of the solution. Discard
he small singular values has the effect of reducing the uncertainty o

-

olution vector.
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UXP5Îib 1 dbi 2 2 ib9i 2

ib 1 dbi 2 , [45]

here ib9i represents only the portion of the data vecto
pace spanned byu1, . . . , ur . Thus the quantity,UXP, is a
easure of how accurate the model is. A small value ofUXP
eans only a very small component of the data vector is

pace not associated with the matrixA. Hence, the inversio
odel, namelyA, is quite accurate. On the other hand, ifUXP

s large, then the model is not accurate.
Track 3 shows the standard deviations of the noise cha

ERROR) and the fit of the signal (echo train) channel (STD).
rack 4 shows theT2 distributions, and Track 5 shows t
ncertainties of allT2 components computed from [31] at t
ame scale. Note that there are some shortT2 components i
rack 4 which have the same order of magnitude as
ncertainties shown in Track 5. This is an indication that th
hortT2 components are not to be trusted.
The uncertainty of the solution which we discuss here re

o the precision, not the accuracy, of the solution, wherea
ccuracy of the model is addressed by the parameter,UXP.
ote that while the standard deviation of the fit,STD, is

elatively constant for different porosities, the uncertainty
he solution gets larger for larger porosity as shown in Trac
he relative uncertainty, i.e., the ratio of uncertainty to po

ty, gets smaller as the porosity gets larger, but the abs
ncertainty in porosity units gets larger for larger porosi

FIG. 4. The log plot showing estimated porosity,T2 distributions, and
rror in eachT2 component from an NMR logging tool. See text for descrip
f each track.
his can be understood in terms of the mathematical procedut
a

el

e
e

rs
he

f
1.
-
te
.

f removing the singular values commensurate with the n
evel. When the noise level is low, more singular values
ncluded in the inversion, henceidyi 2 increases. As the noi
evel increases, more singular values are discarded, h
dyi 2 decreases. In the limiting case, the uncertainty
roaches zero for zero signal. But this is also when the m
reaks down, and the parameter,UXP, approaches 1.
Figure 5 shows the results of composite-data proce
ethod when applied to a typical data set of Numar’s MR
TP. Track 1 shows the results of a splicing technique w

he raw data of regular mode and the short burst mode
rocessed separately and then spliced together (7). A constan
liff in the T2 distribution as a function of depth is clea
isible. This discontinuity is an apparent artifact from
rocessing. Track 2 shows the results of the composite
rocessing where both data sets were processed sim
eously, resulting in a smoothT2 distribution. There are se
ral places where the result of composite-data processing
very differentT2 behavior.
We made, however, an important assumption in the c

osite-data processing method, i.e., the knowledge ofT1/T2

atio. The result of composite-data processing shown in F
ssumed a constantT1/T2 ratio of 1.5 for the entire log. In fac
uch an assumption is not necessary. One can extract theT1/T2

atio from the raw data, simply by scanning through the
ible T1/T2 ratios, and choose the one with the best fit.
esult of such an exercise is shown in Fig. 6.

FIG. 5. The T2 distributions obtained from the splicing technique
omposite-data processing method. The constant cliff shown in the sp

reechnique is a processing artifact.
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Even though it is commonly accepted (10) that such a
atio exists for the entire time scale, there are certa
xceptions. A good example would be when there are
il and water present in the pore space, each having
ifferent T1/T2 ratios. However, such exceptions can
sed to our advantage as a diagnostic tool for the

nterpretation.
For water in a water–wet interface situation, we have

1

T1
<

1

T1s

1

T2
<

1

T2s
1

1

T2D

1

T2D
5

1

3
g 2G2Dwt 2 [46]

here 1/T1s and 1/T2s are the surface relaxation terms, 1/T2D is
rom the diffusion effect in a gradient field,g is the gyromag
etic ratio,G is the gradient,Dw is the diffusion coefficient fo
ater, andt is half the echo spacing. The apparentT1/T2 ratio

s then

T1

T2
5

T1s

T2s
S1 1

T2s

T2D
D , [47]

hereT1s/T2s is the ratio in a homogeneous field and the fa
1 1 T2s/T2D) reflects the effect of a gradient field on the ra

Thus, in a gradient field (as is the case for NMR logg
ools being used nowadays) and in a water zone, a form
ith predominantly longT2 components would have a larg
pparentT1/T2 ratio than that with predominantly shortT2

FIG. 6. The log plot showing theT2 distribution andT1/T2 ratio obtained
rom an NMR log using the composite-data processing method.
omponents. When going into the oil zone, suchT1/T2 may
ly
th
ry

g

r
.

on

ndergo an abrupt change, presumably to a smaller
ecause the diffusion coefficient for oil is much sma
ence, this apparentT1/T2 ratio can be used for diagnos
urposes.
In Track 1 of Fig. 6, we show the total porosity, clay-bou
ater, capillary-bound water, and free fluid index. In Trac
e show the apparentT1/T2 ratio, and in Track 3, theT2

istribution. There is a zone where the apparentT1/T2 ratio
ade a jump to a smaller value. This can be interpreted

ndication of the presence of oil. However, since theT1/T2

atio is not a very well-defined quantity, care should be ta
n the use and the interpertation of this apparent qua
erived from logs.
As pointed out earlier in the introduction, when theT2

elaxation times are preselected to be equally spaced log
ically, the inversion is a linear regression problem. The li

nversion has many advantages. It is very robust, computa
lly efficient, and ideal for log data processing. It also prov

common reference, i.e., the preselected logarithmi
qually spacedT2 relaxation times, for the discussion ofT2

mplitude (pore size) distribution,T2 cutoff for irreducible
ater saturation, etc.
However, a set of preselected logarithmically equally sp

2 relaxation times may not always be a good model. In s
f the data sets we analyzed, we found that the portion o
ata vectorb 1 db that is in the space spanned byum11, . . . ,
n is not insignificant.
In fact, the characteristic relaxation times of a fluid-satur

orous medium are usually not very many, and they nee
e equally spaced logarithmically, either. However, to trea
elaxation times as unknowns is a nonlinear inversion prob
t is inherently more difficult and sometimes unstable to us
og processing. Without having a common reference of a
f preselectedT2 relaxation times, it is also difficult to compa
hysical quantities on a comparative basis. For certain a
ations, however, nonlinear inversion may still be neede
eveal certain characteristics lost in the regularization pr
ure.
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