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We present a composite-data processing method which simul-  improve the precision of the signal amplitude determinatiol
taneously processes two or more data sets with different measure- gt short relaxation times. The problem that this approac
ment errors. We examine the role of the noise level of the data in  5ises, however, is how do we combine two data sets wil
the singular value decomposition inversion process, the criteriafor  jitferent S/N ratios, echo spacings, and repeat delay time
a proper cutoff, and its effect on the uncertainty of the solution. in the calculation of signal amplitude ari, distribution.
Examples of processed logs using the composite-data processing The purpose of this paper is to describe a means of cor
method are presented and discussed. The possible usefulness of the . . .
apparent T,/T, ratio extracted from the logs is illustrated. © 1999 bining _these data Sets in a way that accounts for the d'f_fe
Academic Press ences in a self-consistent manner. The approach results in

improvement in the precision of the porosity and the resc
lution of short T, time constants over what could be
INTRODUCTION achieved without the bursts.

Since the introduction of pulsed nuclear magnetic reso- THE INVERSION OF NMR LOG DATA
nance (NMR) logging toolsl-3), there have been extensive
studies on the inversion of NMR data to obtdipamplitude  The NMR logging tools typically acquir€, spin-echo trains
distributions. Thesd, distributions provide crucial infor- of several hundreds to a few thousands of echoes. The inve
mation on porosity, irreducible water saturation, oil viscossion process involved is to find a set©f amplitudesf;, from
ity, permeability, etc., which are very important to the set of measurements,
petroleum industry. Hence, it is essential to use a proper
inversion procedure to ensure that tiie distribution we "
obtain faithfully reflects the information acquired from the g =Mt)/M;= > fe"+e, i=1,...,n [1]
measurements.

In the oil industry, a suite of well logging tools is used in

a newly drilled well to perform physical measurements t8 minimizing the errore;. Here we assume that there are

find where the oil is. These tools measure such things . .
. . . . eChoes each with an amplitude measured at; andm relax-
electron density, acoustic velocity, neutron density, electri-; = S
o . ation timesT, preselected to be equally spaced on a logarithmi
cal resistivity, and, most recently, nuclear magnetic reso- L . ) .
: ; . Scale. Thus, it is a linear inversion problem. The least-squar
nanceT, relaxation. The purpose is to determine reservojr o
. : . : it is used to minimize the sum
properties such as porosity (void fraction), the relative

amounts of hydrocarbon and brine in the reservoir, and how

j=1

permeable the reservoir is to fluid flow. In measuring ]2 m
relaxation, NMR logging tools obtain measures of porosity minj >, e (X fie T —g)?; . (2]
(proportional to signal amplitude) and pore sizes (propor- =1 =1

tional to relaxation time constants). These measures are
used, in turn, to infer permeability and the minimum brine This problem is well known to be ill-posed. Small fluctua-
saturation that the reservoir can have. tions in the measured data can lead to drastically different se
To improve the signal-to-noiseS(N) ratio without sig- of f;’'s which all give reasonably good fits. This problem has
nificantly increasing the logging time, Prammet al. (4) been studied extensively in the past. There are various ways
introduced the idea of following each CPMG, sequence handling the problem. One of the approaches is to add
with a series of CPMG “bursts” of echoes separated by sh@enalty function to smooth or “regularize” the solution. Ther
delays between bursts. The purpose of the added bursts iamooptimum regularization parameter commensurate with tt

153 1090-7807/99 $30.00
Copyright © 1999 by Academic Press
All rights of reproduction in any form reserved.
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measurement error is determined and used as the optimally
regularized solution.

Short burst mode
TE=0.6 ms

Regular mode
TE=1.2 ms

We found, however, that the singular value decomposition
(SVD) method is particularly attractive for the following rea-
sons: (1) it does not require a penalty term and a search for the
optimum regularization parameter, (2) it provides a clear pic-
ture of the characteristics of the matrix and the overall prop-
erties of the inversion procedure, and (3) it offers a straight-
forward and easily comprehensive method of obtaining the
regularized solution by removing the singular values smaller
than the measurement error.

In general, we assume the measurement error for each spin
echo is the same. Thus; in Eq. [2] is the same for all’s.
However, the procedure becomes somewhat unclear when we
need to process simultaneously two or more NMR data sets
with very different measurement errors. In fact, one encounters
a similar problem when the NMR time domain data are com-
pressed or averaged within different window lengths. This
windowing leads to different improved precisions. FIG.1. Two sets of CPMG spin-echo trains measured by an NMR loggin

In the following, we take a closer look at the procedure usegbl with different measurement errors, one is the short burst mode with ect
in the SVD inversion as to how the noise level affects th@acing of 0.6 ms and the other is the regular mode with echo spacing
solution and elucidate the process with a geometric picturel-? ™

We first present a composite-data processing method which

processes two or more data sets with different measurement , , )
errors simultaneously. We then examine the role of the noisB2/lenge to properly invert all data sets simultaneously is tt

level of the data in the SVD inversion process and its effect G@Me: Without loss of generality, we shall limit our following
the uncertainty of the solution. The results from the composit@'—scuss'On to two data sets ,W'th different mgasurement erro
data processing method are presented and some of the issu¥¥€ Proposed a composite-data processing metpdo(
concerning theT /T, ratio are discussed. Finally, we reviewandle the problem. Basically, we need to minimize the fol
some of the general properties of the linear inversion for NMIRWINg two sets of data simultaneously:

data.

p 1 m
COMPOSITE-DATA PROCESSING ; [E 0? (2 kijyj _ bi)z] [3]
Recently, Numar introduced a total porosity tod), MRIL- =
CTP, which measures the “clay-bound” water. It produces two
data sets: the reguldr, measurement (time between echoes, min
TE = 1.2 ms) with several hundred echoes and a complete
recovery time, and the short burst mode (¥8.6 ms) which
stacks 48 bursts of 10 echo trains each with an incomplete
recovery time of 20 ms. The short burst mode has a sevenfalere
improvement of measurement precision compared with the
regular mode. Figure 1 shows how the raw echoes for the two
sets of data look. The short burst mode has a high measurement
precision which helps accurate determination of the sheort
components, whereas the regular mode covers the medium to
long T, relaxation times. This is an excellent combination to
measure theTl, relaxation behavior of the formation over a TR, and TR represent, respectively, long (complete) anc
large time scale. The challenge is how to invert these two dafiaort (incomplete) TR (recovery tima), and o, the regular
sets simultaneously to obtain as accuraf€, alistribution as mode measurement error and the high precision, short bu
possible. mode measurement error, apcandq, the number of echoes
More recent logging tool development$, §) involve a (or data points) in the regular and the short burst modes.
nine-frequency data acquisition scheme and three sets of echblence, to set up the combined data sets as one least-squs
trains with different measurement precisions. However, tli¢ problem, we have

q 1 m
Z 2 (E lyy; — c)?p (4]

kij — (1 _ efTR\/rTi)eft‘lTj [5]

|ij — (1 _ e—TRser,)e—t‘lTj. [6]
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whereA; represents the combined matrix with= p + g, and
g the combined data vector with elements.
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Now the variance forG; is N;o°, and each window has a
different variance.

Similarly, we can also average the data within each windov
assuming the linear approximation is valid, to obtain

2 )2 (E fe_l/TJ - gl) 2! [10]

where g; is simply the average of the data within tlhtn
window, andt; is an appropriate midpoint within théeh
window. The noise level for theh window is now reduced to
alV'N,.

Regardless of time domain data sum or average, it is easy
rescale the matrix elements and the data vectors so that
windows have the same noise level, as we did in the compo
ite-data processing. This common noise level can then be us
as the cutoff for the SVD inversion process.

CUTOFF FOR SINGULAR VALUE DECOMPOSITION

Now that the common noise level for a composite-data s
can be established, we need to understand how to choose

Note that the high precision data as well as its correspondigiginal level for the inversion process and reexamine the crit

matrix elements have now been scaled by a factoo 6,

rion and the effect for the cutoff of singular values in the SVLC

such that the combined data set has a common noise leve|fersion process. Recall that the singular value decompositi
a;. The latter will be used for the cutoff in the SVD inverSiortheorem in linear a|gebr£(9) states that any real X m

procedure.

matrix A (n = m) can be written as the product of anx n

Once the combined data sets are set up as one least-squgi®®normal matrixU, an n X m diagonal matrixA with

fit problem with the proper weighting taken care of, the methqsbsitive or zero diagonal elements, and the transpose of .
for solving the equation need not to be limited to the SVigy x m orthonormal matrixV, i.e.,
technique. The combined data set need not be restricted to two

data sets, either. A=UAVT [11]
In fact, we encounter a similar situation of varying variances ’
when compressing the time domain data into several Windo% ere
to increase the computation speed. For example, Eqg. [2] can
transformed to
u'u =1, VTV =1 [12]
S l m n
E Ni0'2 (E ijij Gi)z' [8] 2 Uipulq Spq' 1= p,g=n [13]
i=1 j=1 =1
wheren echoes have been partitioned irgovindows [ = m
1,...,s) with N; echoes in théth window, and > ViVig=08p, 1=p,g=m [14]
i=1
n=N;+ - -+ N_;+N+---+N;
and
ri:N1+ -+ Ni,l, r]_:O,
ri+Ni A = d|ag)\l, )\2, ... ,)\m). [15]
Kj= > e
k=ri+1 The diagonal elements;, > A, > ---> A, = 0 are called
ritNg the singular values of matriA.
G = 2 0 [9] The straightforward Householder transformations use
k=ri+1 for the decomposition oA need not produce all positive
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singular values\’s in descending order. However, it is easywherey andb represent, respectively, the ideal solution and th
to make them all positive by making those that are negatiigeal data vector without measurement errors, &nénd b
positive and changing the sign of the corresponding eigerepresent, respectively, the deviation in the solution and tt
vectors, either the column vectous or the row vectorsy;. measurement error of the data vector.
It is also straightforward to rearrange them in a descendingTo satisfy Eqgs. [20] and [21], we must have
order by interchanging the corresponding column and row
vectors. Hence, once the program is written in such a way to ASY =

. . > ) y = &b. [22]
produce aA with all the singular values positive and in
descending order, the information is contained in Hdténd
V matrices. When the operatdk is transformed to the Assuming that the matriA is of rank m, its form in the
coordinates of the principal axes, thieandV matrices also Principal coordinates is represented Ayith m nonvanishing

transform the solution vectoy and data vectob into the descending singular values, ..., An, and the normalized
corresponding principal axes. If we change the order #ift and right singular vectors are denotediy . . ., u,, and
equations in the set of linear equations representedl,ige Vi, - - - Vm, respectively, we can then expregssandb’ as
decomposed diagonal matrix will always have the same
singular values in the same descending order, whereads the y' =VTy [23]
andV matrices will be different.

Let us consider the matrix equation b’ =U'b, [24]

Ay = b, [16] where the lengths of botia and b are not influenced by the

orthogonal transformation, i.gly|| = [ly’|| and|jb|| = [b’||.
where the matribA € 9%"™" operates on a vectgr € R" to Note that since the operation &f is restricted to the sub-
produce a vectob € R", andA has all properties describedspace ol (i.e., spanned by, . .., u,), bothb andb” should
in Egs. [11-15]. Then be in that subspace if the model for inversion is correct. Th
portion of bothb andb’ in the subspace spanned iy, ,, . . .,
|Ay[2 = yTATAY = y' TATAY’ = ||Ay’[|2, [17] Unis a measure of how inaccurate the model is.
When A is transformed to the coordinates of the principa

whereA = UAV™,y = Vy’, and| | represents the norm of 2X€S: W€ have
a vector.
The largest (smallest) value fA&y||* occurs whery is along Ay =AV'y=Ub=b’ [25]
the direction of the eigenvector corresponding to the largest . Ter T .
(smallest) singular value\; (A,). Hence, for an arbitrary Ady’ = AV 8y = U'sb = 5b’.

vectory, the following inequality is established: [26]
1Ay|2 Assuming that differeni;’s have errors that are statistically
A= e =\2, [18] uncorrelated and have the samgethen
which means for the vectd, (8b;dby) = 0?5 [27]
[|bl|? and
A= =\2, 19
Iy 1ol
<8bi,8bj,> = <E Uyioby 2 U|15b|> = 0'25ij [28]
Frequently, we measute and try to determing. There is K |
always measurement error involved in obtainmdrherefore, s 5
instead ofb andy, we haveB = b + éb andY =y + 8y, and (8y18y!) = <3b' 57b1> _9 5. [29]
we are faced with a problem of e A A AP
2
g
A(y + 8y) = Db + &b [20] (8y;dy;) = (> Vidyi > Vi 8y = > )Tivikvjk- [30]
k | k

rather than
The requirement for a good solutiot§y?) < y?, is thus
Ay = b, [21] translated into
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Vi<yi= (E Viyi) ?
K

[k

kl

(31]

A necessary condition for this to be true for everg that
the sum obeys the same inequality

E (8y?) < E y?. [32]
i=1
The r.h.s is
m b/2
S y? zy -3 3]
i=1 i=1 i
and the L.h.s is
m m / m <8b|,2> m 0_2
Sy =3 @y =X " =27 [34
i=1 i=1 i=1 ! =1 !
Thus we need to satisfy
m 0_2 b(2
E [35]

_N\

<35
-1 I

This equation can be satisfieddf < b}* for all i. However,
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A b bl _[lb+ sb] a1
A o o o '

whereA, is the cutoff and is determined lip + 8b|//o. Such
a choice corresponds to ah given by

Io’[|?/A% =iy /A
S DZAE 1A

el=

(38]

Once a proper cutoff such as [37] is determined, the unce
tainty 8y; for eachy; can be calculated from [31]. The choice
we made for the cutoff, i.e., Eq. [37], is a consistent an
reasonable one. On the other hand, it is also somewhat subj
tive as the requirement of [32] is not very well defined. A
slightly lower cutoff can be used and will provide more infor-
mation at the risk of admitting components with higher uncer
tainties, and vice versa.

The singular values smaller than(i.e., allA;, i > r) which
are discarded in the restricted sums are effectively replaced
0 in the inverse matrixA ~*. This means matrixA * is effec-
tively a smaller matrixA, * which has onlyr nonzero diagonal
elements, and botd andV are replaced by smallé¥, andV,
spanned by, ... ,u,, andvy, ...,v, (r = m), respectively.

Hence the solutiory =y + dy is given by

Y=A"B=VA 'U(b+ b), [39]
whereA ™ is a pseudo inverse operating only in the subspac
spanned by/, andU,. The measurement errorforces us to
cut off from A,. This means that part df that is in them — r
dimensional space is masked by noise and becomes palt of
The remainingb (which we refer to ad) is in ther dimen-
sional space, andb is in them — r dimensional space which

it can fail if the m supposedly independent equations aré always normal to the subspatk.
actually nearly nonindependent which results in some very Therefore, we have
small singular values. In particular, those values may dominate

the two sums of [35]. If for those small’s, |bj| is not much [b + 8b||2=|b|*+ |8b]? [40]
larger thano, then [35] will not be satisfied. We can remedy

this by discarding a sufficient number of smaj| e.g., allA;, and

i > r, such that the more restricted sums (i.e.,ifer 1, ...,

r; r = m) satisfy the inequality to a desired degree IAY = B|2=|AY — b]|2+ ||5b]?, [41]

and the l.h.s. is at its minimum whéY — b = 0. When there
is no constraint orY, a solution forAY — b = 0 can always
be found. However, if some of the elementsyohappen to be
negative, and the nonnegativity constraint is imposed, Yhien
wheree is a suitably chosen small parameter. no longer at its calculus minimum afdY — b|> = 0.
Apparently, a data set with a very high signal-to-noise ratio
will allow us to choose a smalk. Instead of choosing a
constante, it is convenient to choose ancommensurate with
the noise level. From the discussion of Eqgs. [18] and [19], it In fact, we can try to understand the properties of the SVI
seems appropriate to choose inversion process with a geometric picture. From [25], we ge

r b,z
2 = 2 E )\2 ’ [36]

(T
2
|

GEOMETRIC PICTURE FOR SVD
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FIG. 2. The m-dimensional hyperellipsoids depicting relationships be-

tween the data and solution vectors.

by? by’ byy?
and
A2 4 AR+ Ay =[BT [43]

As shown in Fig. 2A operates on a vectyr and produces
an ideal data vectdr’. The vectorb’ should have a relation-
ship withy’ according to [25], anth’ andy’ should be situated
on the surface ofm-dimensional hyperellipsoids described by

[42] and [43], respectively.

Then the inversion process would be, given a data veéxtor
with measurement error (depicted in the figure as a sphere
about the vectab’, illustrating the random nature of the noise),
and try to determine a vectgf (also depicted in the figure with
an ellipsoid representing uncertainties about the solution). Note
the lengths of the radius vectors along the principal axes for the
b’-ellipsoid are proportional to singular valuas, whereas
those for they’-ellipsoid are inversely proportional to singular

valuesa;.

The inversion process is equivalent to squeezing lithe
ellipsoid along all its principal axes by a factor proportional to
Ai, whereb” will now becomey’, andy’ will be located on the
surface of they’-ellipsoid. Naturally, any error irb’ (the
spherical shade) will be translated to the erroryin (the
ellipsoidal shade). Note that the uncertaintybélong the axis
associated with the largest singular valug,is relatively small

Vi, ...,V isinversely proportional to the singular values
That's why the sphere, representing the isotropic noises in t
data space, translates to an ellipsoid representing the unc
tainties in the solution space.

To illustrate how the discarding of small singular values
affects the uncertainty of the solutign we draw in Fig. 3 an
ellipsoid representing the uncertainty gf in the solution
space. The equation for the ellipsoid

Nidyi? + Aoyat+ -+ AZoyn? = b2 [44)

is obtained from [26], where the lengths of radius vectors ar
inversely proportional toA;. By discarding small singular
values, i.e.),, as shown in Fig. 3, one effectively collapses the
y’, axis to zero (i.e., replacing A4 by 0 in the inverse matrix
A™Y). As a result, the uncertainties in andy, are greatly
reduced.

RESULTS AND DISCUSSION

A typical example for implementing [36] is shown in Fig. 4.
Track 1 shows the porosity and the uncertainties compute
from [34]. Track 2 shows the paramete(EPSILON) com-
puted from [38] when the cutoff is determined by [37]. This is
equivalent to a value o&® around 0.01, a reasonably small
number. Track 2 also shows another paramet&r, which is
defined as

RSy TRy e+ 52 =’

e > ¥,

FIG. 3. The hyperellipsoid of the uncertainty of the solution. Discarding

compared with that aSSQCiated with the Sma”'eSt singular. valyg small singular values has the effect of reducing the uncertainty of tt
Am. In fact, the error iny’ along the principal axes (i.e., solution vector.
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T, distributions Error in T2 of removing the singular values commensurate with the nois
\ ‘l level. When the noise level is low, more singular values ar
included in the inversion, hendi@y||® increases. As the noise

STD_PU_1
o

MS

""""""""""""" o= breaks down, and the parameteKP, approaches 1.

: \ ' Figure 5 shows the results of composite-data processir
method when applied to a typical data set of Numar's MRIL
CTP. Track 1 shows the results of a splicing technique whel
the raw data of regular mode and the short burst mode we
processed separately and then spliced togeff)eA(constant
e g cliff in the T, distribution as a function of depth is clearly
B ey “W visible. This discontinuity is an apparent artifact from the

oo s /A L processing. Track 2 shows the results of the composite-de
processing where both data sets were processed simul
neously, resulting in a smooth, distribution. There are sev-
eral places where the result of composite-data processing sh
a very differentT, behavior.

We made, however, an important assumption in the con
posite-data processing method, i.e., the knowledgd 6T,
FIG. 4. The log plot showing estimated porosity, distributions, and ratio. The result of composite-data processing shown in Fig.
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L level increases, more singular values are discarded, her
21 orz_1  § | 8y||* decreases. In the limiting case, the uncertainty ay
LoG Log | proaches zero for zero signal. But this is also when the mod

error in eachl, component from an NMR logging tool. See text for descriptionassumed a constafit/T, ratio of 1.5 for the entire log. In fact

of each track.

UXP=

|b + &b|? ’

where||b’|| represents only the portion of the data vector in
space spanned by, ..., uU,. Thus the quantityDxP, is a
measure of how accurate the model is. A small valugf
means only a very small component of the data vector is in a
space not associated with the matiix Hence, the inversion
model, namehA, is quite accurate. On the other handy¥p

is large, then the model is not accurate.

Track 3 shows the standard deviations of the noise channel
(ERROR) and the fit of the signal (echo train) channefrp).
Track 4 shows thel, distributions, and Track 5 shows the
uncertainties of alll, components computed from [31] at the
same scale. Note that there are some shgrtomponents in
Track 4 which have the same order of magnitude as the
uncertainties shown in Track 5. This is an indication that these
shortT, components are not to be trusted.

The uncertainty of the solution which we discuss here refers
to the precision, not the accuracy, of the solution, whereas the
accuracy of the model is addressed by the paramstep,
Note that while the standard deviation of the ftTD, is
relatively constant for different porosities, the uncertainty of
the solution gets larger for larger porosity as shown in Track 1.
The relative uncertainty, i.e., the ratio of uncertainty to poros-

ity, gets smaller as the porosity gets larger, but the absolute,; ¢ 1het
- 9. 2

Unpertainty in porosity qnits gets larger for Iarge_r porositiegemposite-data processing method. The constant cliff shown in the splicir
This can be understood in terms of the mathematical procedwnique is a processing artifact.

T, distributions

Splicing Technique

Composite-Data Processing

such an assumption is not necessary. One can extratifhe
ratio from the raw data, simply by scanning through the pos
sible T,/T, ratios, and choose the one with the best fit. The
_ lb + 8bf[* — b’ [45] result of such an exercise is shown in Fig. 6.

distributions obtained from the splicing technique and
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Porosity T,/T, T, distributions undergo an abrupt change, presumably to a smaller vali

because the diffusion coefficient for oil is much smaller

50 0 5 — Hence, this apparent,/T, ratio can be used for diagnostic
purposes.

In Track 1 of Fig. 6, we show the total porosity, clay-bound
water, capillary-bound water, and free fluid index. In Track 2
we show the apparent,/T, ratio, and in Track 3, thel,
distribution. There is a zone where the appar€ir, ratio
made a jump to a smaller value. This can be interpreted as
indication of the presence of oil. However, since thgT,
ratio is not a very well-defined quantity, care should be take
in the use and the interpertation of this apparent quanti
derived from logs.

As pointed out earlier in the introduction, when tfg
relaxation times are preselected to be equally spaced logari
mically, the inversion is a linear regression problem. The linee
inversion has many advantages. It is very robust, computatio
ally efficient, and ideal for log data processing. It also provide
a common reference, i.e., the preselected logarithmical
equally spaced, relaxation times, for the discussion @f

FIG. 6. The log plot showing th&, distribution andT./T, ratio obtained amplitude (pore size) distribution, cutoff for irreducible
from an NMR log using the composite-data processing method. water saturation, etc.

However, a set of preselected logarithmically equally space
T, relaxation times may not always be a good model. In som
of the data sets we analyzed, we found that the portion of tt

Even though it is commonly accepted0j that such a data vectob + db thatis in the space spanned by.., . . .,
ratio exists for the entire time scale, there are certainly IS NOt insignificant. o _
exceptions. A good example would be when there are both!N fact, the characteristic relaxation times of a fluid-saturate
oil and water present in the pore space, each having vdlgrous medium are usually not very many, and they need n

different T,/T, ratios. However, such exceptions can pR€ equally spaced logarithmically, either. However, to treat th
used to our advantage as a diagnostic tool for the |6alaxation times as unknowns is a nonlinear inversion probler

interpretation. If'is inherently more difficult and sometimes unstable to use fc
For water in a water—wet interface situation, we have 109 processing. Without having a common reference of a sui
of preselected’, relaxation times, it is also difficult to compare

1 1 1 1 1 1 physical quantities on a comparative basis. For certain app
’G?D,r2 [46] cations, however, nonlinear inversion may still be needed |

CBW 1=

FFI7]

BVIT~

VAR R VAN * B

P AR M Nty

v

|

~ — ~—_— 4 — _— = —
Ti T T2 T T T 3 7 reveal certain characteristics lost in the regularization proc
where 1T, and 11T, are the surface relaxation termsJ1 is dure.
from the diffusion effect in a gradient field, is the gyromag-
netic ratio,G is the gradientD,, is the diffusion coefficient for ACKNOWLEDGMENTS
water, andr is half the echo spacing. The appar&pfT, ratio
is then The authors acknowledge helpful discussions with David J. Bergman, Ro

ert J. S. Brown, and Simon W. Stonard, especially DJB, whose many valuak
comments are included in this report.
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